Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nano Lett ; 22(16): 6753-6759, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35939549

RESUMO

Hot electrons play a crucial role in enhancing the efficiency of photon-to-current conversion or photocatalytic reactions. In semiconductor nanocrystals, energetic hot electrons capable of photoemission can be generated via the upconversion process involving the dopant-originated intermediate state, currently known only in Mn-doped cadmium chalcogenide quantum dots. Here, we report that Mn-doped CsPbBr3 nanocrystals are an excellent platform for generating hot electrons via upconversion that can benefit from various desirable exciton properties and the structural diversity of metal halide perovskites (MHPs). Two-dimensional Mn-doped CsPbBr3 nanoplatelets are particularly advantageous for hot electron upconversion due to the strong exciton-dopant interaction mediating the upconversion process. Furthermore, nanoplatelets reveal evidence for the hot electron upconversion via long-lived dark excitons in addition to bright excitons that may enhance the upconversion efficiency. This study establishes the feasibility of hot electron upconversion in MHP hosts and demonstrates the potential merits of two-dimensional MHP nanocrystals in the upconversion process.

2.
Nano Lett ; 21(22): 9543-9550, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34762431

RESUMO

We investigated the magnetic effect of Mn2+ ions on an exciton of Mn-doped CsPbI3 quantum dots (QDs), where we looked for the signatures of an exciton magnetic polaron known to produce a large effective magnetic field in Mn-doped CdSe QDs. In contrast to Mn-doped CdSe QDs that can produce ∼100 T of magnetic field upon photoexcitation, manifested as a large change in the energy and relaxation dynamics of a bright exciton, Mn-doped CsPbI3 QDs exhibited little influence of a magnetic dopant on the behavior of a bright exciton. However, a µs-lived dark exciton in CsPbI3 QDs showed 40% faster decay in the presence of Mn2+, equivalent to the effect of ∼3 T of an external magnetic field. While further study is necessary to fully understand the origin of the large difference in the magneto-optic property of an exciton in two systems, we consider that the difference in antiferromagnetic coupling of the dopants is an important contributing factor.


Assuntos
Pontos Quânticos , Fenômenos Magnéticos , Magnetismo , Fenômenos Físicos , Compostos de Zinco
3.
J Chem Phys ; 153(18): 184703, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33187409

RESUMO

The fine structure of the band edge exciton and the dark exciton photoluminescence (PL) are topics of significant interest in the research of semiconducting metal halide perovskite nanocrystals, with several conflicting reports on the level ordering of the bright and dark states and the accessibility of the emitting dark states. Recently, we observed the intense dark exciton PL in strongly confined CsPbBr3 nanocrystals at cryogenic temperatures, in contrast to weakly confined nanocrystals lacking dark exciton PL, which was explained by the confinement enhanced bright-dark exciton splitting. In this work, we investigated the size-dependence of the dark exciton photoluminescence properties in CsPbBr3 and CsPbI3 quantum dots in the strongly confined regime, showing the clear role of confinement in determining the bright-dark energy splitting (ΔEBD) and the dark exciton lifetime (τD). We observe the increase in both ΔEBD and τD with increasing quantum confinement in CsPbBr3 and CsPbI3 QDs, consistent with the earlier predictions on the size-dependence of ΔEBD and τD. Our results show that quantum confinement plays a crucial role in determining the accessibility to the dark exciton PL and its characteristics in metal halide perovskite nanocrystals.

4.
Nano Lett ; 20(10): 7321-7326, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32845638

RESUMO

Dark exciton as the lowest-energy (ground) exciton state in metal halide perovskite nanocrystals is a subject of much interest. This is because the superior performance of perovskites as the photon source combined with long lifetime of dark exciton can be attractive for many applications of exciton. However, the direct observation of the intense and long-lived dark exciton emission, indicating facile access to dark ground exciton state, has remained elusive. Here, we report the intense photoluminescence from dark exciton with microsecond lifetime in strongly confined CsPbBr3 nanocrystals and reveal the crucial role of confinement in accessing the dark ground exciton state. This study establishes the potential of strongly quantum-confined perovskite nanostructures as the excellent platform to harvest the benefits of extremely long-lived dark exciton.

5.
Polym Chem ; 10(37): 5094-5102, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31853268

RESUMO

We report a facile synthetic approach to create stable radical block copolymers containing a secondary fluorinated block via anionic polymerization using a bulky, sterically hindered countercation composed of a sodium ion and di-benzo-18-crown-6 complex. The synthetic conditions described in this report allowed for controlled molecular weights and dispersity (<1.3) of both homopolymers: poly(2,2,6,6-tetramethyl-1-piperidinyloxy-methacrylate) (PTMA) and poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) as well as their block copolymers (PTMA-b-PTFEMA). The stable radical concentration of the polymers was determined by electron spin resonance (ESR) and showed radical content above 70%. An analysis of the microphase morphologies in PTMA-b-PTFEMA thin films via atomic force microscopy (AFM) and grazing incidence small angle X-ray scattering (GISAXS) showed clear evidence of long-range ordering of lamellar and cylindrical morphologies with 32 and 36 nm spacing, respectively. The long-range ordering of the morphologies was developed with the aid of two separate neutral layers: PTMA-ran-PTFEMA-ran-poly(hydroxyl ethyl methacrylate) (PHEMA) and poly(isobutyl methacrylate) (PiBMA)-ran-PTFEMA-ran-PHEMA, which helped us corroborate, along with the Zisman method, the surface energy estimation of PTMA to be 30.1 mJ/m2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...